P e THE UNIVERSITY OF

CHICAGO

Section 6

Very Large Scale Methods

CHICAGO |

6.1 MATRIX-FREE METHODS
CONVERGENCE FRAMEWORK

CHICAGO |

Matrix Free Methods

e Parallel computing: avoid factorization and return only matrix-vector

products (and not matrices) .

d — |Model

— B*d

d,x, — |Model| — V* f(x,)* x

XX

* 'The last version in particular can be particularly efficiently carried out

with Automatic Differentiation.

* Most common algorithms in optimization: Krylov Algorithms (Lanczos,

modified CG).

* But I must deal with early termination (I will not wait n steps) and

indefinite matrices.

CHICAGO |

Framework for Early termination: Inexact Newton

Methods

* We modity the original Newton method:
V2 fipi =~V fi Vb ==V

* 'The residual:)
re =V~ fipk +V fi,

* CG loop termination rule

n.—0
Irell < nellV fell, y

Forcing sequence

CHICAGO |

Convergence Result

e Main Result:

Theorem 7.1.

Suppose that V? f (x) exists and is continuous in a neighborhood of a minimizer x*, with
V? f(x*) is positive definite. Consider the iteration xy, = Xy + px where py satisfies (7.3), and

assume that ng < n for some constant n € [0, 1). Then, if the starting point xo is sufficiently
near x*, the sequence {xy} converges to x* and satisfies

IV2 £ (x*) (kg — 2 < IV F () (e — 29, (7.4)

for some constant) withn < n < 1.

CHICAGO |

6.2 KRYLOV-TYPE METHODS FOR
NONLINEAR UNCONSTRAINED
OPTIMIZATION

CHICAGO |

Main Concern:

e How do I deal with indefiniteness of the matrices, since CG
works only for positive definite matrices?

CHICAGO |

Line-Search CG

Algorithm 7.1 (Line Search Newton—CG).

Given initial point x;
fork=0,1,2,...
Define tolerance ¢ = VIVAIDIV fells

Setzo =0,ro =V fi,do = —ro = —

W Note double
ifj = iteration
return py = —V fi;
else
=2 e How come it works?
Setaj =rjrj/d; Bidj;
St zin =2+ eydis CG itself is a descent

Set Fig1 =171;j —i—ajBkd-;
if ||fj+1|| < €
return py = ;415

T T, .
Set Bj1 =r;,rjn/rjrj;

method !!!

Setdjyy = —rjq1 + Bjnd;; .
end (for) - - - nk — mln(O.S, vV ”vfk")

Set xp+1 = xx + ax px, where o satisfies the Wolfe, Goldstein, or
|Armijo backtracking conditions (using oy = 1 if possible);
end

CHICAGO |

CG-Trust Region (STEIHAUG)

min mi(p) E fi+ (V) p+1pTBip subjectto ||p|l < Ay,

Algorithm 7.2 (CG-Steihaug).
Given tolerance ¢; > 0;
Setzo =0,ro =V fx,do = —ro = —V fi;

if |[roll < e
return py = 70 = 0;
for j=0,1,2,...

lfdeAdj <0

Find 7 such that py = z; + vd; minimizes my(py) in (4.5)
and satisfies || pg|| = Ax;

return pyg;

Setaj = rorj/djTBkdj;

Setzj1 =2z +ajdj;

if lzj+1ll = Ak
Find t > 0 such that py = z; + td| satisfies || pi|| = Ag;
return pyg;

Setrjj =rj+a;Bid;;

if lrjsill < ek
return py = zZj41;

Set Bjy1 = rj-T+lrj+1/rorj;

Setdjyy = —rjy1 + Bjndjs

end (for).

* Only inner loop.

Define forcing
sequence as LS-CG

[terate in x.

CHICAGO |

6.3 LANCZOS ALGORITHMS
FOR UNCONSTRAINED
OPTIMIZATION

CHICAGO |

A shortcoming of CG methods

* They accept even SMALL negative curvature foregoing more
promising directions.

* Solution: try to approximate the spectrum of the Hessian, using
the Lanczos algorithm

CHICAGO |

Conjugate Gradients and Lanczos Algorithm (Tremolet)

* 'The conjugate gradient algorithm minimizes a quadratic function
with a symmetric positive-definite Hessian:

1

J(z) = 2" Az + bz + ¢
O The algorithm is: 2

Tpy1 = Ty —+ k d k step to the line minimum
Jk+1 = Gk + ok Ad,, recalculate the gradient
dk-{-l = —0k+1 T Bkd k calculate a new direction
where:
d o = < 9k Gk > B, = < Ok+1; Gk+1 >
0 — — Yo Lk — e = .
J < dy, Ady > < Gk, Ok >

3 Eliminate ;. to get the 3-term recurrence (Lanczos):

. o 1 1
285 Agr1 = _Q_gk + | — + Jk+1 — Gk 42

QA O] Qk+1

CHICAGO |

Lanczos Orthogonalization Procedure

* It orthogonalizes the Krylov space

K2) =8, ={r,An.... A =K, (Ar) (K2)

* But the iteration works even if the matrix is NOT positive
definite !!l

* 'The coefficients are found without needing d; by just eliminating
g (k+2). EXPAND

., Bk o 1 1
Agkri=——gr+ | — + = Ok+1 — Ok+2
X} X} Xk 41 @

CHICAGO |

Conjugate Gradients and Lanczos Algorithms

e Let (Qibe the matrix whose columns are g9i/gil|

e Then AQk = Qka + gke;‘:
where 1} is tri-diagonal and p"[— ((ﬁ)’ ..., 0, 1)
AT : . T
o After N iterations, we get QNAQN = Th.
* e Tnhas the same eigenvalues as A .
* Intermediate matrices have interleaving eigenvalues:
Aj—1(Tk) 2 Aj(Tet1) 2 Aj(Tk)

* Evenfor | « N, the spectrum range is well approximated.

287

CHICAGO |

lL.anczos Iteration

qo =0

Fp =10

xg = arbifrary nonzero starting vector
q1 = o/ ||zol|2

fork=1,2,...
up = Aqy,
g, = q;‘:“ru;;
up = wp — Ok—1qk—1 — Ok Gk
B = [|ur|2

if 5. = 0 then stop
Qiet1 = i/ g
end

Unless it breaks down, produces orthogonal basis of
Krylov space and a tridiagonal matrix similar to A.

CHICAGO |

l.anczos 1teration

@ o and J; are diagonal and subdiagonal entries of
symmetric tridiagonal matrix T3,

@ If 3, = 0, then algorithm appears to break down, but in that
case invariant subspace has already been identified (i.e.,
Ritz values and vectors are already exact at that point)

CHICAGO |

l.anczos 1teration

@ In principle, if Lanczos algorithm were run until & = n,
resulting tridiagonal matrix would be orthogonally similar to
A

@ In practice, rounding error causes loss of orthogonality,
invalidating this expectation

@ Problem can be overcome by reorthogonalizing vectors as
needed, but expense can be substantial

@ Alternatively, can ignore problem, in which case algorithm
still produces good eigenvalue approximations, but multiple
copies of some eigenvalues may be generated

CHICAGO |

Tridiagonal System

d, u O's || x b,
[, d, u, Xy b,
[, dy u X3 _ b,
ln—2 dn—l un—l xn—l bn—l

_O'S ln—l n _|L xn _ | “n

 Tridiagonal matrices are EXTREMELY easy to
factorize, solve with, and find eigenvalues of (if
symmetric) .

e u = [ui, uz, .., Un-1]

e d = [di, d2, .., dn1, dia]

e 1 = [11, 12, .., 1ln-]

CHICAGO |

LU decomposition of Tridiagonal Matrix

0's

0's

dl,

ul,

dl,

0's

ul,
dl,

(Cholesky similar)

0's
ul,

dl . ul _

dl

Thomas Algorithm:

n_=I0_/dl_,

dl =d - _,/dl _)*u,

CHICAGO |

Using LLanczos for Optimization

* Solve trust-region (inner loop):

min f; + e{ Qj(ka)elTw — %wTTjw subject to ||lw| < Ay,
weR/ -

* Note, however, that you must store ALL vectors.

* But you will not truncate a promising direction just before it
gives a negative inner product.

e [teration continues, until a similar stopping test 1s reached (1.
residual=gradient is small)

